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4.1 Systems of Linear Equations in Two Variables

Learning Objectives:

Give the degree of a polynomial

Add and subract polynomials

evaluate a polynomial for a given value of its variable

Professor Tim Busken Section 5.2 Polynomials, Sums, and Differences



Definition

A term is either a single number or variable, or the product or
quotient of several numbers or variables separated from another
term by a plus or minus sign in an overall expression.
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Definition

A term is either a single number or variable, or the product or
quotient of several numbers or variables separated from another
term by a plus or minus sign in an overall expression.

For example, the following algebraic expression

100 + 3x + 5yz2w3
−

2
3

x

has terms 100, 3x , 5yz2w3, and 2
3 x.
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Definition

A term is either a single number or variable, or the product or
quotient of several numbers or variables separated from another
term by a plus or minus sign in an overall expression.

For example, the following algebraic expression

100 + 3x + 5yz2w3
−

2
3

x

has terms 100, 3x , 5yz2w3, and 2
3 x.

Definition

The numerical factor of a term is a coefficient .
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Definition

A term is either a single number or variable, or the product or
quotient of several numbers or variables separated from another
term by a plus or minus sign in an overall expression.

For example, the following algebraic expression

100 + 3x + 5yz2w3
−

2
3

x

has terms 100, 3x , 5yz2w3, and 2
3 x.

Definition

The numerical factor of a term is a coefficient .

For example, the aforementioned terms have coefficients 100, 3, 5,
and 2

3 .
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Definition

A constant is a single number, such as 8 or 9.
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Definition

A monomial in one variable is the product of a constant (a
number) and a variable raised to a whole number (0, 1, 2, . . . )
power. A monomial in one variable has the form

axn,

where a is a constant that is any real number, x is a variable, and n
is a whole number.
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Definition

A monomial in one variable is the product of a constant (a
number) and a variable raised to a whole number (0, 1, 2, . . . )
power. A monomial in one variable has the form

axn,

where a is a constant that is any real number, x is a variable, and n
is a whole number.

For instance,
3, 5x , 7x4, and 9x200

are all examples of monomials
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Definition

In a monomial of the form axn where a is not zero (a , 0), we call
n the degree of the monomial.
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Definition

In a monomial of the form axn where a is not zero (a , 0), we call
n the degree of the monomial.

The degree of a nonzero constant is zero. Because
0 = 0x = 0x2 = 0x3 = . . . , we cannot assign a degree to the
number 0. Therefore, we say 0 has no degree.
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Definition

In a monomial of the form axn where a is not zero (a , 0), we call
n the degree of the monomial.

Monomial Coefficient Degree

3 3 0

−5x2
−5 2

x7 1 7

0 0 no degree
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Definition

In a monomial of the form axn where a is not zero (a , 0), we call
n the degree of the monomial.

Monomial Coefficient Degree

3 3 0

−5x2
−5 2

x7 1 7

0 0 no degree

4x−3 is not a monomial because the exponent of the variable,
x, is −3 and −3 is not a whole number.
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Definition

In a monomial of the form axn where a is not zero (a , 0), we call
n the degree of the monomial.

Monomial Coefficient Degree

3 3 0

−5x2
−5 2

x7 1 7

0 0 no degree

4x−3 is not a monomial because the exponent of the variable,
x, is −3 and −3 is not a whole number.

2x1/3 is not a monomial because the exponent of the variable
is 1/3, and 1/3 is not a whole number.
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Definition

A polynomial is a monomial or a sum of monomials.
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Polynomials are sums of monomials.

11 monomial

3x4 monomial

2x2 + 1 called a binomial because it has two terms

5x3 + x − 1 called trinomial because it has three terms

x1/2 + 5 is not a polynomial

5√x + 5 is not a polynomial

1
x − 1

is not a polynomial
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Definition

Like terms are terms that contain the same variable(s) raised
to the same power(s). Like terms can be combined or collected
together by writing them as a single term whose coefficient is
the sum of the coefficients of the terms being combined.

Example Identify the like terms of the following polynomial:

4x3 + 5x − 7x2 + 2x3 + x2

Solution:
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Definition

Like terms are terms that contain the same variable(s) raised
to the same power(s). Like terms can be combined or collected
together by writing them as a single term whose coefficient is
the sum of the coefficients of the terms being combined.

Example Identify the like terms of the following polynomial:

4x3 + 5x − 7x2 + 2x3 + x2

Solution:

like terms: 4x3 and 2x3 same variable and exponent

like terms: − 7x2 and x2 same variable and exponent
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Definition

Like terms are terms that contain the same variable(s) raised
to the same power(s). Like terms can be combined or collected
together by writing them as a single term whose coefficient is
the sum of the coefficients of the terms being combined.

Example Identify the like terms of the following polynomial:

4x3 + 5x − 7x2 + 2x3 + x2

Solution:

4x3 and 2x3 can be combined into 6x3 using the
distributive property:

4x3 + 2x3 = (4 + 2) · x3
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Definition

Like terms are terms that contain the same variable(s) raised
to the same power(s). Like terms can be combined or collected
together by writing them as a single term whose coefficient is
the sum of the coefficients of the terms being combined.

Example Identify the like terms of the following polynomial:

4x3 + 5x − 7x2 + 2x3 + x2

Solution:

−7x2 and x2 can be combined into −6x2 using the
distributive property:

−7x2 + x2 = −7x2 + 1x2 = (−7 + 1) · x2
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Example: Subtract (x2
− 5x) − (3x2

− 4x − 1)

(x2
− 5x) − (3x2

− 4x − 1) =

= (x2
− 5x)−1(3x2

− 4x − 1) since −a = (−1) · a

= (x2
− 5x) + (−1)(3x2

− 4x − 1) since a − b = a + (−b)

= (x2
− 5x) − 3x2 + 4x + 1 distr. prop

= x2
− 5x − 3x2 + 4x + 1 assoc. prop

= (x2
− 3x2) + (−5x + 4x) + 1 comm. and assoc. props

= −2x2
− x + 1 addn closure prop
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