Section 5.2 Polynomials, Sums, and Differences

Professor Tim Busken

Department of Mathematics Grossmont College

October 2, 2012

4.1 Systems of Linear Equations in Two Variables

Learning Objectives:

- Give the degree of a polynomial
- Add and subract polynomials
- evaluate a polynomial for a given value of its variable

A **term** is either a single number or variable, or the product or quotient of several numbers or variables separated from another term by a plus or minus sign in an overall expression.

A **term** is either a single number or variable, or the product or quotient of several numbers or variables separated from another term by a plus or minus sign in an overall expression.

For example, the following algebraic expression

$$100 + 3x + 5yz^2w^3 - \frac{2}{3}x$$

has terms 100, 3x, $5yz^2w^3$, and $\frac{2}{3}x$.

A **term** is either a single number or variable, or the product or quotient of several numbers or variables separated from another term by a plus or minus sign in an overall expression.

For example, the following algebraic expression

$$100 + 3x + 5yz^2w^3 - \frac{2}{3}x$$

has terms $100, 3x, 5yz^2w^3$, and $\frac{2}{3}x$.

Definition

The numerical factor of a term is a coefficient.

A **term** is either a single number or variable, or the product or quotient of several numbers or variables separated from another term by a plus or minus sign in an overall expression.

For example, the following algebraic expression

$$100 + 3x + 5yz^2w^3 - \frac{2}{3}x$$

has terms $100, 3x, 5yz^2w^3$, and $\frac{2}{3}x$.

Definition

The numerical factor of a term is a coefficient.

For example, the aforementioned terms have coefficients 100, 3, 5, and $\frac{2}{3}$.

A constant is a single number, such as 8 or 9.

A monomial in one variable is the *product* of a constant (a number) and a variable raised to a whole number (0, 1, 2, ...) power. A monomial in one variable has the form

 ax^n ,

where *a* is a constant that is any real number, *x* is a variable, and *n* is a whole number.

A monomial in one variable is the *product* of a constant (a number) and a variable raised to a whole number (0, 1, 2, ...) power. A monomial in one variable has the form

$$ax^n$$
,

where *a* is a constant that is any real number, *x* is a variable, and *n* is a whole number.

For instance,

3,
$$5x$$
, $7x^4$, and $9x^{200}$

are all examples of monomials

In a monomial of the form ax^n where a is not zero ($a \ne 0$), we call n the **degree** of the monomial.

In a monomial of the form ax^n where a is not zero ($a \ne 0$), we call n the **degree** of the monomial.

The degree of a nonzero constant is zero. Because $0 = 0x = 0x^2 = 0x^3 = \dots$, we cannot assign a degree to the number 0. Therefore, we say 0 has no degree.

In a monomial of the form ax^n where a is not zero ($a \ne 0$), we call n the **degree** of the monomial.

Monomial	Coefficient	Degree
3	3	0
$-5x^{2}$	-5	2
x ⁷	1	7
0	0	no degree

In a monomial of the form ax^n where a is not zero ($a \ne 0$), we call n the **degree** of the monomial.

Monomial	Coefficient	Degree
3	3	0
$-5x^{2}$	-5	2
x^7	1	7
0	0	no degree

• $4x^{-3}$ is not a monomial because the exponent of the variable, x, is -3 and -3 is not a whole number.

In a monomial of the form ax^n where a is not zero ($a \ne 0$), we call n the **degree** of the monomial.

Monomial	Coefficient	Degree
3	3	0
$-5x^{2}$	-5	2
x ⁷	1	7
0	0	no degree

- $4x^{-3}$ is not a monomial because the exponent of the variable, x, is -3 and -3 is not a whole number.
- $2x^{1/3}$ is not a monomial because the exponent of the variable is 1/3, and 1/3 is not a whole number.

A polynomial is a monomial or a sum of monomials.

Polynomials are sums of monomials.

$$3x^4$$
 monomial

$$2x^2 + 1$$
 called a binomial because it has two terms

$$5x^3 + x - 1$$
 called trinomial because it has three terms

$$x^{1/2} + 5$$
 is not a polynomial

$$\sqrt[5]{x+5}$$
 is not a polynomial

$$\frac{1}{x-1}$$
 is not a polynomial

Like terms are terms that contain the same variable(s) raised to the same power(s). Like terms can be combined or collected together by writing them as a single term whose coefficient is the sum of the coefficients of the terms being combined.

Example Identify the like terms of the following polynomial:

$$4x^3 + 5x - 7x^2 + 2x^3 + x^2$$

Solution:

Like terms are terms that contain the same variable(s) raised to the same power(s). Like terms can be combined or collected together by writing them as a single term whose coefficient is the sum of the coefficients of the terms being combined.

Example Identify the like terms of the following polynomial:

$$4x^3 + 5x - 7x^2 + 2x^3 + x^2$$

Solution:

like terms: $4x^3$ and $2x^3$ same variable and exponent

like terms: $-7x^2$ and x^2 same variable and exponent

Like terms are terms that contain the same variable(s) raised to the same power(s). Like terms can be combined or collected together by writing them as a single term whose coefficient is the sum of the coefficients of the terms being combined.

Example Identify the like terms of the following polynomial:

$$4x^3 + 5x - 7x^2 + 2x^3 + x^2$$

Solution:

 $4x^3$ and $2x^3$ can be combined into $6x^3$ using the distributive property:

$$4x^3 + 2x^3 = (4+2) \cdot x^3$$

Like terms are terms that contain the same variable(s) raised to the same power(s). Like terms can be combined or collected together by writing them as a single term whose coefficient is the sum of the coefficients of the terms being combined.

Example Identify the like terms of the following polynomial:

$$4x^3 + 5x - 7x^2 + 2x^3 + x^2$$

Solution:

 $-7x^2$ and x^2 can be combined into $-6x^2$ using the distributive property:

$$-7x^2 + x^2 = -7x^2 + 1x^2 = (-7 + 1) \cdot x^2$$

Example: Subtract $(x^2 - 5x) - (3x^2 - 4x - 1)$

$$(x^{2} - 5x) - (3x^{2} - 4x - 1) =$$

$$= (x^{2} - 5x) - 1(3x^{2} - 4x - 1) \qquad \text{since } -a = (-1) \cdot a$$

$$= (x^{2} - 5x) + (-1)(3x^{2} - 4x - 1) \qquad \text{since } a - b = a + (-b)$$

$$= (x^{2} - 5x) - 3x^{2} + 4x + 1 \qquad \text{distr. prop}$$

$$= x^{2} - 5x - 3x^{2} + 4x + 1 \qquad \text{assoc. prop}$$

$$= (x^{2} - 3x^{2}) + (-5x + 4x) + 1 \qquad \text{comm. and assoc. props}$$

addn closure prop

 $= |-2x^2 - x + 1|$