Section 5.2 Polynomials, Sums, and Differences

Professor Tim Busken

Department of Mathematics
Grossmont College
October 2, 2012

4.1 Systems of Linear Equations in Two Variables

Learning Objectives:

- Give the degree of a polynomial
- Add and subract polynomials
- evaluate a polynomial for a given value of its variable

Definition

A term is either a single number or variable, or the product or quotient of several numbers or variables separated from another term by a plus or minus sign in an overall expression.

Definition

A term is either a single number or variable, or the product or quotient of several numbers or variables separated from another term by a plus or minus sign in an overall expression.

For example, the following algebraic expression

$$
100+3 x+5 y z^{2} w^{3}-\frac{2}{3} x
$$

has terms $100,3 x, 5 y z^{2} w^{3}$, and $\frac{2}{3} x$.

Definition

A term is either a single number or variable, or the product or quotient of several numbers or variables separated from another term by a plus or minus sign in an overall expression.

For example, the following algebraic expression

$$
100+3 x+5 y z^{2} w^{3}-\frac{2}{3} x
$$

has terms $100,3 x, 5 y z^{2} w^{3}$, and $\frac{2}{3} x$.

Definition

The numerical factor of a term is a coefficient.

Definition

A term is either a single number or variable, or the product or quotient of several numbers or variables separated from another term by a plus or minus sign in an overall expression.

For example, the following algebraic expression

$$
100+3 x+5 y z^{2} w^{3}-\frac{2}{3} x
$$

has terms $100,3 x, 5 y z^{2} w^{3}$, and $\frac{2}{3} x$.

Definition

The numerical factor of a term is a coefficient.
For example, the aforementioned terms have coefficients $100,3,5$, and $\frac{2}{3}$.

Definition

A constant is a single number, such as 8 or 9 .

Definition

A monomial in one variable is the product of a constant (a number) and a variable raised to a whole number ($0,1,2, \ldots$) power. A monomial in one variable has the form

$$
a x^{n}
$$

where a is a constant that is any real number, x is a variable, and n is a whole number.

Definition

A monomial in one variable is the product of a constant (a number) and a variable raised to a whole number ($0,1,2, \ldots$) power. A monomial in one variable has the form

$$
a x^{n}
$$

where a is a constant that is any real number, x is a variable, and n is a whole number.

For instance,

$$
3,5 x, 7 x^{4}, \text { and } 9 x^{200}
$$

are all examples of monomials

Definition

In a monomial of the form $a x^{n}$ where a is not zero $(a \neq 0)$, we call n the degree of the monomial.

Definition

In a monomial of the form $a x^{n}$ where a is not zero $(a \neq 0)$, we call n the degree of the monomial.

The degree of a nonzero constant is zero. Because $0=0 x=0 x^{2}=0 x^{3}=\ldots$, we cannot assign a degree to the number 0 . Therefore, we say 0 has no degree.

Definition

In a monomial of the form $a x^{n}$ where a is not zero $(a \neq 0)$, we call n the degree of the monomial.

Monomial	Coefficient	Degree
3	3	0
$-5 x^{2}$	-5	2
x^{7}	1	7
0	0	no degree

Definition

In a monomial of the form $a x^{n}$ where a is not zero $(a \neq 0)$, we call n the degree of the monomial.

Monomial	Coefficient	Degree
3	3	0
$-5 x^{2}$	-5	2
x^{7}	1	7
0	0	no degree

- $4 x^{-3}$ is not a monomial because the exponent of the variable, x, is -3 and -3 is not a whole number.

Definition

In a monomial of the form $a x^{n}$ where a is not zero $(a \neq 0)$, we call n the degree of the monomial.

Monomial	Coefficient	Degree
3	3	0
$-5 x^{2}$	-5	2
x^{7}	1	7
0	0	no degree

- $4 x^{-3}$ is not a monomial because the exponent of the variable, x, is -3 and -3 is not a whole number.
- $2 x^{1 / 3}$ is not a monomial because the exponent of the variable is $1 / 3$, and $1 / 3$ is not a whole number.

Definition

A polynomial is a monomial or a sum of monomials.

Polynomials are sums of monomials.

11 monomial
monomial
$2 x^{2}+1$
called a binomial because it has two terms
$5 x^{3}+x-1 \quad$ called trinomial because it has three terms
$x^{1 / 2}+5 \quad$ is not a polynomial
$\sqrt[5]{x+5} \quad$ is not a polynomial
$\frac{1}{x-1} \quad$ is not a polynomial

Definition

Like terms are terms that contain the same variable(s) raised to the same power(s). Like terms can be combined or collected together by writing them as a single term whose coefficient is the sum of the coefficients of the terms being combined.

Example Identify the like terms of the following polynomial:

$$
4 x^{3}+5 x-7 x^{2}+2 x^{3}+x^{2}
$$

Solution:

Definition

Like terms are terms that contain the same variable(s) raised to the same power(s). Like terms can be combined or collected together by writing them as a single term whose coefficient is the sum of the coefficients of the terms being combined.

Example Identify the like terms of the following polynomial:

$$
4 x^{3}+5 x-7 x^{2}+2 x^{3}+x^{2}
$$

Solution:
like terms: $4 x^{3}$ and $2 x^{3} \quad$ same variable and exponent like terms: $-7 x^{2}$ and x^{2} same variable and exponent

Definition

Like terms are terms that contain the same variable(s) raised to the same power(s). Like terms can be combined or collected together by writing them as a single term whose coefficient is the sum of the coefficients of the terms being combined.

Example Identify the like terms of the following polynomial:

$$
4 x^{3}+5 x-7 x^{2}+2 x^{3}+x^{2}
$$

Solution:
$4 x^{3}$ and $2 x^{3}$ can be combined into $6 x^{3}$ using the distributive property:

$$
4 x^{3}+2 x^{3}=(4+2) \cdot x^{3}
$$

Definition

Like terms are terms that contain the same variable(s) raised to the same power(s). Like terms can be combined or collected together by writing them as a single term whose coefficient is the sum of the coefficients of the terms being combined.

Example Identify the like terms of the following polynomial:

$$
4 x^{3}+5 x-7 x^{2}+2 x^{3}+x^{2}
$$

Solution:
$-7 x^{2}$ and x^{2} can be combined into $-6 x^{2}$ using the distributive property:

$$
-7 x^{2}+x^{2}=-7 x^{2}+1 x^{2}=(-7+1) \cdot x^{2}
$$

Example: Subtract $\left(x^{2}-5 x\right)-\left(3 x^{2}-4 x-1\right)$

$$
\begin{array}{lr}
\left(x^{2}-5 x\right)-\left(3 x^{2}-4 x-1\right)= \\
=\left(x^{2}-5 x\right)-1\left(3 x^{2}-4 x-1\right) & \text { since }-a=(-1) \cdot a \\
=\left(x^{2}-5 x\right)+(-1)\left(3 x^{2}-4 x-1\right) & \text { since } a-b=a+(-b) \\
=\left(x^{2}-5 x\right)-3 x^{2}+4 x+1 & \text { distr. prop } \\
=x^{2}-5 x-3 x^{2}+4 x+1 & \text { assoc. prop } \\
=\left(x^{2}-3 x^{2}\right)+(-5 x+4 x)+1 & \text { comm. and assoc. props } \\
=-2 x^{2}-x+1 & \text { addn closure prop }
\end{array}
$$

